Big-O Notation and
Algorithmic Analysis

What do you think makes some algorithms "faster"
or "better" than others?

Object-Oriented
Roadmap Programming

C++ basics

vectors + grids arrays

dynamic memory

stacks + queues
management

sets + maps linked data structures

real-world
algorithms

Life after CS106B/

recursive
problem-solving

Midterm

Roadmap

Life after CS106B/

TOday’S How can we formalize the

notion of efficiency for

guestion algorithms?

Today'’s
topics

Review

Big-O Notation

. Algorithmic Analysis

Beyond Algorithmic
Analysis

Review

Questions from attendance tickets

Do structs exist outside of GridLocation?

Can we use both vectors and stacks at the same time?

Are grids a thing outside of the Stanford C++ library?

| don't quite understand why we aren't just learning using regular cpp vectors

Stanford “Vector” vs STL “vector”

What you want to do Stanford vector<int> std: :vector<int>
Create a new, empty vector Vector<int> vec; std: :vector<int> vec;
Create a vector with n copies of O Vector<int> vec(n); std: :vector<int> vec(n);
Create a vector with n copies of a value k Vector<int> vec(n, k); std: :vector<int> vec(n, k);
Add a value k to the end of a vector vec.add(k); vec.push back(k);
Remove all elements of a vector vec.clear(); vec.clear();
Get the element atindex i int k = vec[i]; int k = vec[i]; (does not bounds check)
Check size of vector vec.size(); vec.size();
Loop through vector by index i f:zi') (1nt i=20; i < vec.size(); fc:;) (std::size_t i = 0; i < vec.size();
Replace the element at index i vec[i] = k; vec[i] = K; (does not bounds check)

Credit:

http://web.stanford.edu/class/cs106l/lectures/lecture4.pdf

Ordered ADTs Unordered ADTs

Elements accessible by indices: e Sets (elements unique)

e Maps (keys unique)
e Vectors (1D)

e Grids (2D)

Elements not accessible by indices:

e Queues (FIFO)
e Stacks (LIFO)

Nested Data Structures

map
keys values
"hansa" > {"12:00","3:00","9:00"}
"kandula" {"8:00","1:00"}
" lumpy" {"11:00"}
"surus" {"5:00","3:00","9:00","2:00"}

Map< : >

Wonderful diagram and animal naming borrowed from Sonja Johncon-Yu

Nested Data Structures

queue
mod way lay tap rat
mop may may rap rap
map map map map map
Queue< >

Wonderful diagram and animal naming borrowed from Sonja Johncon-Yu

Assignment 2: Fun with Collections

A couple of the ADTs you’ll use:
e Grid<bool>
e Set<GridLocation>
e Stack<GridLocation>

=

Assignment 2: Fun with Collections

A couple of the ADTs you’ll use:
e Set<string>
e Map<string, Set<string>>

(=

Google Search I'm Feeling Lucky

Nested ADTs Summary

e Powerful

o Can express highly structured and complex data
o Used in many real-world systems

e Tricky

o With increased complexity comes increased cognitive load in differentiating between the levels

of information stored at each level of the nesting

Specifically in C++, working with nested data structures can be tricky due to the fact that

references and copies show up at different points in time. Follow the correct paradigms
presented earlier to stay on track!

Note on ADTs (and learning overall)

e We covered six different data structures and their applications over the span of

a week, and concluded by implementing BFS using many of these ADTs.
o Thisis a lot to take in!

e As Kylie mentioned at the beginning of the quarter, we want to normalize

struggle in this class.

o We cover content very quickly in this class!

o Ifyou leave lecture feeling you don't understand the algorithm/concept covered that day, don't
worry.

o Lecture is always your first exposure to content — very few people can build deep
understanding upon the first exposure

o The assignments (and section and office hours and LalR) are your chance to revisit lecture,
practice, and really nail down the concepts!

o Struggling along the way means that you are really learning.

How can we formalize the
notion of efficiency for
algorithms?

Why do we care about efficiency?

e Implementing inefficient algorithms may make solving certain tasks impossible,

even with unlimited resources

=

©

0
®
o

Directions
Playa Samara Guanacaste Province X
N
¥
Ostional X
Leave now - -
2h41min 16.6km

Ruta 150 / Nicoya - Sdmara

1h10 min 389 km

Ruta 934 / Terciopelo - Barco Quebrado; Ruta 160
/ Samara - Nosara: Ruta 160 / Nosara - Ostional

c<g Share routes

N7 |
\ pnacaste |

Gz
\ASFistula,—__ ipulas,
Haclenda 27 Abril 4 silencio, B
Pinilla, Nicoya Olgo
Tamarindo R
Rio g Sanjosé
de Iash:otmana, Cruz [
e Nicoya
Junquillal,

Juan Diaz,

Safta Nicoja

Cruz

Pig Los Molinos,
Lag Vista al Nicoya
sA Mar, Santa e
Guy £
Lojiz Cerro Mans|
Negro,
Nicoya
I Rosario, Hojaficha,
o)/ Cuafifiqul Rio Montafia, pIc Guanacaste
Nicoya
Marvilla,
Hojancha
Las
Zaragoza,
Nicoya Belén Betania,
de Nosarita Hojancha
Santa
Marta,
Hojancha

Garza)

Playa ®
Barrigona, P Playa Samara.
Samara Guanacaste Province,

Islita,

Why do we care about efficiency?

e Implementing inefficient algorithms may make solving certain tasks impossible,
even with unlimited resources

e Implementing efficient algorithms allows us to solve important problems, often
with limited resources available -

TIME COoT

STRATEGY A
STRATEGY B

ANALYZING WHETHER
STRATEGY A OR B
1S MORE. EFFICIENT

THE REASON I AM S0 INEFFICIENT

https://xkcd.com/1445/

Questions computer scientists ask:

1. Does it work?
2. Is it fast?

https://web.stanford.edu/class/archive/cs/cs161/cs161.1204/Lectures/Lecture2/Lecture2-compressed.pdf

Assignment 1 At A Glance

e In Assignment 1, you implemented three different algorithms for finding perfect
numbers

Assignment 1 At A Glance

e In Assignment 1, you implemented three different algorithms for finding perfect

numbers

o Exhaustive Search
m Runtime predictions to find 5th perfect number: Anywhere from 25-100+ days

Assignment 1 At A Glance

e In Assignment 1, you implemented three different algorithms for finding perfect

numbers
o Exhaustive Search
m Runtime predictions to find 5th perfect number: Anywhere from 25-100+ days
o Smarter Search
m Runtime predictions to find 5th perfect number: Anywhere from a couple minutes to 1
hour

Assignment 1 At A Glance

e In Assignment 1, you implemented three different algorithms for finding perfect

numbers

o Exhaustive Search
m Runtime predictions to find 5th perfect number: Anywhere from 25-100+ days
o Smarter Search
m Runtime predictions to find 5th perfect number: Anywhere from a couple minutes to 1
hour
o Euclid's Algorithm
m Actual runtime to find 5th perfect number: Less than a second!

Assignment 1 At A Glance

e In Assignment 1, you implemented three different algorithms for finding perfect

numbers

o Exhaustive Search
m Runtime predictions to find 5th perfect number: Anywhere from 25-100+ days

o Smarter Search
m Runtime predictions to find 5th perfect number: Anywhere from a couple minutes to 1

hour

o Euclid's Algorithm

m Actual runtime to find 5th perfect number: Less than a second!

e Core idea: Although each individual experienced dramatically different real
runtimes for these three algorithms, there is a clear distinction here between
"fast"/"efficient" and "slow"/"inefficient" algorithms

Containers

e In lecture on Tuesday, someone asked, why not use a Vector<Vector<string>>

instead of a Grid<string>?
o Vector of Vectors would be slower to use

e There are "fast"/"efficient" and "slow"/"inefficient" ways to insert, delete, or
manipulate data in containers

Questions computer scientists ask:

1. Does it work?
2. Is it fast?

https://web.stanford.edu/class/archive/cs/cs161/cs161.1204/Lectures/Lecture2/Lecture2-compressed.pdf

Why do computer scientists
care about efficiency?

We solve problems at scale.

Google Search S

Why do we care about efficiency?

e Implementing inefficient algorithms may make solving certain tasks impossible,
even with unlimited resources

e Implementing efficient algorithms allows us to solve important problems, often
with limited resources available

e If we can quantify the efficiency of an algorithm, we can understand and
predict its behavior when we apply it to unseen problems

Estimating Quantities

[polls]

Leveraging Intuition

e Today's activity is going to look a little bit different than usual. There's no code,
no pseudocode, and nothing that resembles C++.

e [nstead, you're going to be presented with a set of 4 scenarios, where you
have two similar items of different magnitudes, one small and one larger. You
know the exact magnitude of the smaller item — can you predict what the
magnitude of the larger item will be based on the intuitive visual relationship?

e We'll collect your response to all 4 polls first, and then we'll walk through the
answers to the exercises. Remember that these are guesses based on your
intuition — don't try to do any complex calculations!

What is a rate?

Example 1

A 0%

Mass: 100kg

]01]2

208>

These two square
plates are made
of the same
material.

They have the
same thickness.

What’s your best
guess for the
mass of the
second square?

Example 2

A 0%

Mass: 60kg

10111

These two square
plates are made
of the same
material.

They have the
same thickness.

What’s your best
guess for the
mass of the
second square?

Example 3

A0

\/

Mass: 100kg

[
ey

-

-

A\

P

These two cubes
are made of the
same material.

What’s your best
guess for the
mass of the
second cube?

Example 4

10m

Mass: 1,000kg

30m

These two statues
are made of the
same material.

What'’s your best
guess for the
mass of the
second statue?

Example 5

How much paint is
needed to paint
the surface of the
larger
icosahedron?

All sides of each triangle
are 10m long.

Paint required: All sides of each triangle
90L are 40m long.

Answers

Example 1

A 0%

Mass: 100kg

]01]2

Mass is about 400kg

(4 smaller squares
make up the larger
square)

These two square
plates are made
of the same
material.

They have the
same thickness.

What’s your best
guess for the
mass of the
second square?

Example 2

A 0%

Mass: 60kg

100]

Mass is about 240kg

(side length is

doubled, overall are

increases by factor
of 4)

These two square
plates are made
of the same
material.

They have the
same thickness.

What’s your best
guess for the
mass of the
second square?

Example 3

\/

Mass: 100kg

Mass is about 800kg
(8 smaller cubes
make up the larger

cube)

208>

B
-

[
.

A\

P

These two cubes
are made of the
same material.

What’s your best
guess for the
mass of the
second cube?

Mass is about 27000kg (statue
dimensions increased by factor

Exa m p|e 4 of 3, and volume increases by
factor of 27)

These two statues
are made of the
same material.

What'’s your best
guess for the
mass of the
second statue?

10m
30m

Mass: 1,000kg

Example 5 Paint Required is
about 1440L (side

length grows by
factor of 4, area
increases by factor
of 42 = 16)

All sides of each triangle
are 10m long.

Paint required: All sides of each triangle
90L are 40m long.

How much paint is
needed to paint
the surface of the
larger
icosahedron?

Key Takeaway

Big-O Notation
(or, review of rates)

Big-O Notation

° is a way of quantifying the rate at which some quantity grows.

Big-O Notation

° is a way of quantifying the rate at which some quantity grows.
e Example:
o A square of side length r has area O (r?).

Big-O Notation

° is a way of quantifying the rate at which some quantity grows.
e Example:
o A square of side length r has area O (r?).

K_’ The "0 ctands for "on
the order of, which is

, hot

an exact formula

Big-O Notation

° is a way of quantifying the rate at which some quantity grows.
e Example:
o A square of side length r has area O (r?).

Big-O Notation

° is a way of quantifying the rate at which some quantity grows.
e Example:
o A square of side length r has area O (r?).

A 4A
—
r —

Big-O Notation

° is a way of quantifying the rate at which some quantity grows.
e Example:
o A square of side length r has area O (r?).

A 4A QA

|

r | ———|
27

3r
Doubling r increasec area 4x

[vipling r increaces area 9x

Big-O Notation

° is a way of quantifying the rate at which some quantity grows.
e Example:

o A square of side length r has area O (r?).

o A circle of radius r has area O (r?).

A 4A QA

|

r | ———|
27

3r
Doubling r increasec area 4x

[vipling r increaces area 9x

Big-O Notation

° is a way of quantifying the rate at which some quantity grows.
e Example:

o A square of side length r has area O (r?).

o A circle of radius r has area O (r?).

A 4A QA

r | ———|
27

3r
Doubling r increasec area 4x

[vipling r increaces area 9x

Big-O Notation

° is a way of quantifying the rate at which some quantity grows.
e Example:

o A square of side length r has area O (r?).

o A circle of radius r has area O (r?).

e
}T*i—u l—l‘
: . 2

2r
3r
Doubling r increasec area 4x

ﬂle

r

[vipling r increaces area 9x

Big-O Notation

° is a way of quantifying the rate at which some quantity grows.
e Example:

o A square of side length r has area O (r?).

o A circle of radius r has area O (r?).

A 4A QA

b

r | ,
2r \ 2

ﬂle

Y r
3r 3r
Doubling r increasec area 4x

|

[vipling r increaces area 9x

Big-O Notation

° is a way of quantifying the rate at which some quantity grows.
e Example:

o A square of side length r has area O (r?).

o A circle of radius r has area O (r?).

Al 144 | | 9A

ﬂIG

V=

: 2 2
r , . r
3r ' 3r '
Doué//‘ug r increases area Yx Doué//‘hg r increases area Yx

vipling v increaces area 9x [ripling r increaces area 9x

Big-O Notation

° is a way of quantifying the rate at which some quantity grows.

e Example: This just cays that these
o A square of side length r has area O (x?) < quantities qrow af the came

o A circle of radius r has area O (r?). < relative ratec. It does not
cay that theyre equa/./

V=

A 4A QA

|

116

: 2 2
r . . r
3r 3r
Doué//‘ug r increases area Yx Doué//‘hg r increases area Yx

TF"P/’."@ ¥ increaces area 9x Tk/p/fhg ¥ increaces area 9x

Big-O in the Real
World

Big-O Example: Network Value

e Metcalfe’s Law
o The value of a communications network with n users is O (n?).

Big-O Example: Network Value

e Metcalfe’s Law
o The value of a communications network with n users is O (n?).

e Imagine a social network has 10,000,000 users and is
worth $10,000,000. Estimate how many users it needs to
have to be worth $1,000,000,000.

e Reasonable guess: The network needs to grow its value
100x%. Since value grows quadratically with size, it needs to
grow its user base 10x, requiring 100,000,000 users.

Big-O Example: Cell Size

e Question: Why are cells tiny?

Big-O Example: Cell Size

e Question: Why are cells tiny?
e Assumption: Cells are spheres

Big-O Example: Cell Size

e Question: Why are cells tiny?
e Assumption: Cells are spheres
e A cell absorbs nutrients from its environment through its

surface area.
o Surface area of the cell: 0 (r?)

Big-O Example: Cell Size

e Question: Why are cells tiny?

e Assumption: Cells are spheres

e A cell absorbs nutrients from its environment through its
surface area.

o Surface area of the cell: 0 (r?)
e A cell needs to provide nutrients all throughout its

volume
o Volume of the cell: 0 (r?®)

Big-O Example: Cell Size >

e Question: Why are cells tiny? Pl
e Assumption: Cells are spheres
e A cell absorbs nutrients from its environment through its

surface area. 2
o Surface area of the cell: O (r?) 4

e A cell needs to provide nutrients all throughout its

volume
o Volume of the cell: 0 (r?®)

e As a cell gets bigger, its resource intake grows slower
than its resource consumption, so each part of the cell %

gets less energy. /

N
\\
FaidERRRRse aN

Big-O Example: Manufacturing

e You're working at a company producing cat toys. It costs you some amount of
money to produce a cat toy, and there was some one-time cost to set up the
factory.

e \What data would you need to gather to estimate the cost of producing ten
million cat toys?

Big-O Example: Manufacturing

e You're working at a company producing cat toys. It costs you some amount of

money to produce a cat toy, and there was some one-time cost to set up the
factory.

e \What data would you need to gather to estimate the cost of producing ten
million cat toys?

Cost(n) = n x costPerToy +

Big-O Example: Manufacturing

e You're working at a company producing cat toys. It costs you some amount of

money to produce a cat toy, and there was some one-time cost to set up the
factory.

e \What data would you need to gather to estimate the cost of producing ten
million cat toys?

This ferm qrows agc a

function of n X/

Cost(n) = n x costPerToy +

Big-O Example: Manufacturing

e You're working at a company producing cat toys. It costs you some amount of

money to produce a cat toy, and there was some one-time cost to set up the
factory.

e \What data would you need to gather to estimate the cost of producing ten
million cat toys?

This ferm qrows agc a

function of n X/ \/

Cost(n) = n x costPerToy +

Big-O Example: Manufacturing

e You're working at a company producing cat toys. It costs you some amount of

money to produce a cat toy, and there was some one-time cost to set up the
factory.

e \What data would you need to gather to estimate the cost of producing ten
million cat toys?

This ferm qrows agc a

function of n X/ \/

Cost(n) = n x costPerToy +
O(n)

Trick to calculating Big-O

Throw out all the leading coefficients and lower-order terms (including constants).

Cost(n) = $2 x n +
52— n +—
Cost(n) = O(n)

Nuances of Big-O

e Big-O notation is designed to capture

It does not capture information about
o leading coefficients: the area of a square and a circle are both O(r?).
o lower-order terms: there may be other factors contributing to growth that
get glossed over.

e However, it's still a

Attendance ticket:
https://tinyurl.com/30juncs106b

Please don’t send this link to students who are not here. It’s on your honor!

https://tinyurl.com/30juncs106b

Announcements

Announcements

e Assignment 1 due Friday, July 1, at 11:59 pm (grace period Saturday, July 2,
11:59 pm)
e Assignment 2 will be released today. It will be due on Thursday, July 9 at
11:59pm PDT.
o YEAH hours TBD
o This assignment is a step-up in complexity compared to A1 — make sure to
get started ASAP.
e If you haven't already, come visit Kylie and me at our office hours! Huang 19.

Example: One Loop
E_f_g‘__'*ﬁ__ AOQS avvoo) D (oo~ N QN\QSV J(‘?
cs‘wu\ & (octan & \pmslc\/\ V\)
ard T (&~ e 3&(‘3

Lor L=\ Xo
v Yy ==~* (‘c:‘rorv\/\qL\BG

{exorn ?N—-SG
Quesiont Ldnse 1S AR (‘o«\f\'w:\—‘(\v-o../?

E© O AT

ODCley w)) \,\2-)

Example: Two Loops
o B % Corrays F (wnadh n) Tloes & oc O
Scnbx A- (o.v\ ‘\z\esq_,v) SH\ (o X o\~ ‘\-T\

'(or va\l4e o
& AN == % kot Troe

L 1=\ n -
«“\Q g G (‘c,’(‘orv\/\.Q\\)b

fexoen SHLSE

Rues™Non: C‘om\'su\:s ’\:-Mq.
© oW o O\~)

D oUbaed (D © W)

Example: Two Nested Loops

R_S:___\J;":_“D_." 8\0 0&(‘6-‘3& Pr,% \4\0~V'<- O~ t\w\ou" RN C.ON\MQ*\?
aiven Geroys O (B onvxj%\:\ N

"Qor‘ =\ o
o \=\ ™ wn)
\‘}&“ N == QCN Cekera VRoE

fexorm §O-LSE
@ocs‘&oi\'. & om\'.f\:) ‘\Ruf?.
®© o) © D)
@ DQ\OS n) @ 6@

Big-O Example: Network Value

e Metcalfe’s Law
o The value of a communications network with n users is O (n?).

e Imagine a social network has 10,000,000 users and is
worth $10,000,000. Estimate how many users it needs to

have to be worth $1,000,000,000.
10,000,000

50,000,000
100,000,000
1,000,000,000

A WN

Analyzing Code

Analyzing Code

How con we apply Big-0 to

computer science?

Answering “is it fast?”

e We could use runtime
o Runtime is the amount of time it takes for a program to run

Answering “is it fast?”

e What is runtime?
o Runtime is the amount of time it takes for a program to run

[SimpleTest] =--- Tests from main.cpp
[SimpleTest] starting (PROVIDED TEST, line 36) timing vectorMax on 10,00... = Correct
Line 42 Time vectorMax(v) (size =10000000) completed in 0.268 secs Old 2012
Line 43 Time vectorMax(v) (size =10000000) completed in 0.264 secs
Line 44 Time vectorMax(v) (size =10000000) completed in 0.269 secs MacBook
You passed 1 of 1 tests. Keep it up!

Why runtime isn’t enough

e What is runtime?
o Runtime is the amount of time it takes for a program to run

[SimpleTest] =--- Tests from main.cpp
[SimpleTest] starting (PROVIDED TEST, line 36) timing vectorMax on 10,00... = Correct
Line 42 Time vectorMax(v) (size =10000000) completed in 0.268 secs Old 2012

Line 43 Time vectorMax(v) (size =10000000) completed in 0.264 secs
Line 44 Time vectorMax(v) (size =10000000) completed in 0.269 secs MacBook
You passed 1 of 1 tests. Keep it up!

[SimpleTest] ---- Tests from main.cpp ————-

[SimpleTest] starting (PROVIDED_TEST, line 36) timing vectorMax on 20,00... = Correct
Line 42 Time vectorMax(v) (size =10000000) completed 1in ©.181 secs ECPS|OOVVGrfU|
Line 43 Time vectorMax(v) (size =10000000) completed 1in 0.181 secs computers
Line 44 Time vectorMax(v) (size =10000000) completed 1in ©.183 secs

You passed 1 of 1 tests. Que bien!

Why runtime isn’t enough

e Measuring wall-clock runtime is less than ideal, since
o It depends on what computer you're using,
o What else is running on that computer,
o Whether that computer is conserving power,
o FEtc.

It's very hard to standardize.

Why runtime isn’t enough

e Measuring wall-clock runtime is less than ideal, since
o It depends on what computer you're using,
o What else is running on that computer,
o Whether that computer is conserving power,
o FEtc.

e Worse,

Answering “Is it fast?”

e We need a standardized way to think about rate of algorithms
e That doesn’t make assumptions about our computer, our

circumstances, our inputs, etc.

Answering “Is it fast?”

e We need a standardized way to think about rate of algorithms
e That doesn’t make assumptions about our computer, our
circumstances, our inputs, etc.

count the number of executions in an algorithm.

e number of times a single operation is done (access an element, compare two items)
e We can analyze this before we even run the program!

Analyzing Code:
vectorMax()

vectorMax()

int vectorMax(Vector<int> &v) {
int currentMax = v[©0];
int n = v.size();
for (int 1 = 1; i < n; i++) {
if (currentMax < v[i]) {
currentMax = v[i];

}

return currentMax;

}

vectorMax()

int vectorMax(Vector<int> &v) { Assunmaany|ndnndua|' |
int currentMax = v[0]; statement takes one unit of time
to execute.

int n = v.size();
for (int i = 1; 1 < n; i++) {

if (currentMax < v[i]) { IF the mput Vector hasn
currentMax = v[i];

} elements, how many

} execvtions [Cime vnits } will
return currentMax;

) thic code take to run?

vectorMax()

Total time based on # of repetitions

int vectorMax(Vector<int> &v) { 1time unit
int currentMax = v[@];
int n = v.size();
for (int 1 = 1; i < n; i++) {
if (currentMax < v[i]) {
currentMax = v[i];

}

return currentMax;

}

vectorMax()

Total time based on # of repetitions

int vectorMax(Vector<int> &v) { 1time unit
int currentMax = v[0]; Ttime unit
int n = v.size();
for (int 1 = 1; i < n; i++) {
if (currentMax < v[i]) {
currentMax = v[i];

}

return currentMax;

}

vectorMax()

Total time based on # of repetitions

int vectorMax(Vector<int> &v) { 1tvne'Jnﬁ
int currentMax = v[0]; Ttime unit
int n = v.size(); 1time unit

for (int i = 1; i < n; i++) {
if (currentMax < v[i]) {
currentMax = v[i];

}

return currentMax;

}

vectorMax()

Total time based on # of repetitions

int vectorMax(Vector<int> &v) { 1time unit
int currentMax = v[0]; Ttime unit
int n = v.size(); 1time unit
for (int i = 1; & <€ n; i++) { N time units

if (currentMax < v[i]) {
currentMax = v[i];

}

return currentMax;

}

vectorMax()

Total time based on # of repetitions

int vectorMax(Vector<int> &v) { 1time unit
int currentMax = v[@]; Ttime unit
int n = v.size(); 1time unit
for (int i = 1; i < n; i+#) { N time units
if (currentMax < v[i]) { N-1 time units
currentMax = v[i];
}
}
return currentMax;
}

vectorMax()

Total time based on # of repetitions

int vectorMax(Vector<int> &v) { 1time unit
int currentMax = v[0]; Ttime unit
int n = v.size(); 1time unit
for (int i = 1; i < n; i++) { N time units
if (currentMax < v[i]) { N-1 time units
currentMax = v[i]; N-1time units
}
}
return currentMax;
}

vectorMax()

Total time based on # of repetitions

int vectorMax(Vector<int> &v) { 1time unit
int currentMax = v[0]; Ttime unit
int n = v.size(); 1time unit
for (int i = 1; i < n; i++) { N time units
if (currentMax < v[i]) { N-1 time units
currentMax = v[i]; N-1 time units
} (up to) N-1time units
}
return currentMax;
}

vectorMax()

Total time based on # of repetitions

int vectorMax(Vector<int> &v) { 1time unit
int currentMax = v[0]; Ttime unit
int n = v.size(); 1time unit
for (int i = 1; i < n; i++) { N time units
if (currentMax < v[i]) { N-1 time units
currentMax = v[i]; N-1time units
} (up to) N-1time units
} 1time unit
return currentMax;
}

vectorMax()

int vectorMax(Vector<int> &v) {
int currentMax = v[©0];
int n = v.size();

for (int i = 1; 1 < n; i++) { Total amount of time
if (currentMax < v[i]) { AN + 1
currentMax = v[i];
}
}
return currentMax;
}

vectorMax()

int vectorMax(Vector<int> &v) {
int currentMax = v[©0];
int n = v.size();

for (int i = 1; 1 < n; i++) { Total amount of time
if (currentMax < v[i]) { AN + 1
currentMax = v[i];
}
} I¢ thic useful?
return currentMax; What doec thic tell vs?

}

Answering “Is it fast?”

e We need a standardized way to think about rate of algorithms
e That doesn’t make assumptions about our computer, our
circumstances, our inputs, etc.

count the number of executions in an algorithm.

e Maybe this is still too much detail
e Constant factors might still depend on the system

Answering “Is it fast?”

e We need a standardized way to think about rate of algorithms
e That doesn’t make assumptions about our computer, our
circumstances, our inputs, etc.

find the of this algorithm.

e General enough to help us compare across computers
e It’s a rate that represents: As the input size grows, how does the runtime grow?
e A computer-independent metric for efficiency!

vectorMax()

int vectorMax(Vector<int> &v) {
int currentMax = v[©0];
int n = v.size();

for (int i = 1; 1 < n; i++) { Total amount of time
if (currentMax < v[i]) { AN + 1
currentMax = v[i];
}
} I¢ thic useful?
return currentMax; What doec thic tell vs?

}

vectorMax()

int vectorMax(Vector<int> &v) {
int currentMax = v[©0];
int n = v.size();

for (int i = 1; i < n; i++) { Total amount of time
if (currentMax < v[i]) { ()(ru
currentMax = v[i];
} More practical: Doubling the cize of the
} input roughly doubles the runtime.
}r'etur'n currentMax; [herefore, the input and runtime have a

linear (0(v)) relationsh ip-
D

Analyzing Code:
printStars()

printStars()

void printStars(int n) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
cout << "*' << endl;

}

How much time will it take for this code to run, as a fuonction of n?

Answer using big-0 notation.

printStars()

void printStars(int n) {
for (int 1 = 0; i < n; i++) {
for (int j = 0; j < n; Jj++) {

}

}

How much time will it take for this code to run, as a fuonction of n?

Answer using big-0 notation.

printStars()

void printStars(int n) {
for (int 1 = 0; i < n; i++) {
for (int j = 0; j < n; Jj++) {

}

}

How much time will it take for this code to run, as a fuonction of n?

Answer using big-0 notation.

printStars()

void printStars(int n) {
for (int 1 = 0; i < n; i++) {

}

How much time will it take for this code to run, as a fuonction of n?

Answer using big-0 notation.

printStars()

void printStars(int n) {
for (int 1 = 0; i < n; i++) {

}

How much time will it take for this code to run, as a fuonction of n?

Answer using big-0 notation.

printStars()

void printStars(int n) {

}

How much time will it take for this code to run, as a fuonction of n?

Answer using big-0 notation.

printStars()

void printStars(int n) {

}

How much time will it take for this code to run, as a fuonction of n?

Answer using big-0 notation.

printStars()

void printStars(int n) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
cout << "*' << endl;

}

0(n?%)

A final analyzing code
example

hmmThatsStrange()

void hmmThatsStrange(int n) {
cout << "Mirth and Whimsy" << n << endl;

The runtime ic of the value N.

hmmThatsStrange()

void hmmThatsStrange(int n) {
cout << "Mirth and Whimsy" << n << endl;

How much time will it take for this code to run, ac a fuonction of n?

Answer using big-0 notation.

hmmThatsStrange()

void hmmThatsStrange(int n) {
cout << "Mirth and Whimsy" << n << endl;

0(1)

Applying Big-O to
ADTs

Efficiency Categorizations So Far

e Constant Time — O(1)
o Super fast, this is the best we can hope for!
o Euclid's Algorithm for Perfect Numbers

e Linear Time — O(n)
o This is okay, we can live with this

e Quadratic Time — O(n?)

o This can start to slow down really quickly
o Exhaustive Search for Perfect Numbers

runtime

Inp‘ut size
e How do all the ADT operations we've seen so far fall into these categories?

Big-O Terminology

o(1) O(log n) Oo(n) O(n log n) o(n?) o(n*) (k=21) O(a") (a>1)

A fast algorithm is when the worst-case run-time grows SLOWLY
with the input size.

ADT Big-O Matrix

ADT Big-O Matrix

e \ectors
o .size() — O(1)
o .add() — O(1)
o v[i]-0(1)
o .insert() — O(n)
o .remove() — O(n)
o .sublist() - O(n)
o traversal — O(n)

e Grids
o .numRows()/.numCols() — O(1)

o gfil[j] - O(1)
o .inBounds() — O(1)
o traversal — O(n?)

ADT Big-O Matrix

e \ectors e Queues
o .size() — O(1) o .size() — O(1)
o .add() — O(1) o .peek() — O(1)
o Vv[i]-0(1) o .enqueue() — O(1)
o .insert() — O(n) o .dequeue() — O(1)
o .remove() — O(n) o .isEmpty() — O(1)
o .sublist() - O(n) o traversal — O(n)
o traversal — O(n) e Stacks
e Grids

o .numRows()/.numCols() — O(1)

o g[i]lj] - O(1)
o .inBounds() — O(1)
o traversal — O(n?)

o .size() — O(1)

o .peek() — O(1)

o .push() — O(1)

© .pop() — O(1)

o .isEmpty() — O(1)
o traversal — O(n)

ADT Big-O Matrix

e \ectors e Queues e Sets
o .size() — O(1) o .size() — O(1) o .size() — O(1)
o .add() — O(1) o .peek() — O(1) o .isEmpty() — O(1)
o Vv[i]-0(1) o .enqueue() — O(1) o .add() — ???
o .insert() — O(n) o .dequeue() - O(1) o .remove() — ???
o .remove() — O(n) o .isEmpty() — O(1) o .contains() — ???
o .sublist() - O(n) o traversal — O(n) o traversal — O(n)
o traversal — O(n) e Stacks e Maps

e Grids o .size() — O(1) o .size() — O(1)
o .numRows()/.numCols() — O(1) o .peek() — O(1) o .isEmpty() — O(1)
o g[ilLil — O(1) o .push() — O(1) o m[key] — ???
o .inBounds() — O(1) o .pop() — O(1) o .contains() — ???
o traversal — O(n?) o .isEmpty() — O(1) o traversal — O(n)

o traversal — O(n)

ADT Big-O Matrix

e \ectors e Queues e Sets
o .size() — O(1) o _sizel) — O(1) a_size() — O(1)
o .add() — O(1) SIzTﬂpty() - 0(1)
o v[i]-O(1) ()—2??
o .insert() — O(n) pove() — ??7?
o .remove() — O(n) tains() — ???
o .sublist() - O(n) ersal — O(n)
o traversal — O(n) aps

e Grids () — O(1)
o .numRows()/.numCols() mpty() — O(1)
o g[i]jl - o(1) ey] - ???
o .inBounds() — O(1) S — tains() — ???
o traversal — O(n?) o .isEmpty() — O(1) o traversal — O(n)

o traversal — O(n)

Beyond Algorithmic Analysis

(credit: Katie Creel)

Ramifications of Big O Differences

¢ If we have an algorithm that has 1000 elements, and the O(log n) version runs in 10 milliseconds...

—— ' . polynomial .
constant logarithmic linear nlogn quadratic 5 exponential
(other than n4, (nA2))
1 milliseconds |10 milliseconds]|l second10 secondsfl17 minutes 277 hours heat death of the universe

Algorithmic complexity analysis can be the difference between a
program that runs in a few seconds and one that won't finish before

the heat death of the universe.

It is often necessary.

Questions computer scientists ask:

1. Does it work?
2. Is it fast?

Is that all we care about?

https://web.stanford.edu/class/archive/cs/cs161/cs161.1204/Lectures/Lecture2/Lecture2-compressed.pdf

WHAT ELSE IS

IN THE BIG

=
L
>
LL]
S Z
= <
Ow
o O

?

>
L
=
(0 4
O
O
—
=

— * Case Study:

In 2006, the State of Indiana

awarded IBM/ACS a contract for
e "~ >$1 billion to “modernize”
Indiana’s welfare case

management system, including
' applications for food stamps and
Medicaid.

After only 19 months, it was
clearly not going as planned.

& 05

Case Study

Some "lowlights" of the system's failures:

® 'Applicants waited 20 or 30 minutes on hold, only to be denied benefits for

“failure to cooperate in establishing eligibility” if they were unable to receive
a callback after having burned through their limited cellphone minutes.”

® 'By February 2008, the number of households receiving food stamps in

Delaware County, which includes Muncie, Indiana, dropped more than 7
percent, though requests for food assistance had climbed 4 percent in
Indiana overall.”

Case Study

In light of these failures, the State of Indiana
cancelled its contract with IBM and sued the
company for breach of contract.

In court, IBM argued that they were not responsible
for issues related to wait times, appeals, wrongful
denials, lost documents, etc. as the contract only
stated that a successful system would succeed by
increasing efficiency and reducing costs and fraud.
IBM’s system did reduce costs, but did so by
denying people the benefits they needed.

EFFICIENCY & OPTIMIZATION CAN ONLY BE
AS GOOD AS GOOD AS WHAT IS OPTIMIZED...

Questions computer scientists ask:

1. Does it work?
2. Is it fast?

Is that all we care about?

https://web.stanford.edu/class/archive/cs/cs161/cs161.1204/Lectures/Lecture2/Lecture2-compressed.pdf

When Less
Efficient

Algorithms
Rule

Passwords are often encrypted with a hash.

What prevents a hacker from guessing
randomly, perhaps millions of times per
minute, until the password is discovered?

~ Algorithmic Inefficiency ~

becrypt and other popular encryption functions
are intentionally designed to be slow, memory
intensive, or both, making guessing more
costly.

Computation
requires
energy.

BAY AREA

Stanford power outage: University preparing for a
restoration that could ‘take days’

Annie Vainshtein
June 22, 2022 | Updated: June 22, 2022 6:36 p.m.

- The Secret Cost of Google's Data Centers:
Billions of Gallons of Water to Cool Servers
[ad]

i Bitcoin consumes 'more electricity

S Technology reporter

& O 10February 2021

Green Precison A Conditioning Unit

. _ACRACY

Computing

Big-O analysis can also
be part of a “green
computing”: a
commitment to
decreasing the

environmental impact of
computing. [Perforated Ties|—

Green Computing Includes ...

Selecting sources of electricity with
lower greenhouse gas emissions,
including by moving computing to
the cloud when necessary

Recycling and reducing use of raw
materials during manufacturing,
especially metals that are socially and
environmentally damaging to mine

N S

RN

Decreasing carbon
footprint of datacenters

Reducing energy consumption
of computation itself, including
by increasing algorithmic
efficiency!

Big data needs Big O
and efficient
algorithms

But storing big Improving
data has a big efficiency can
carbon cost reduce energy

D 4

Green Computing’s
Efficiency Tradeoffs

e When is the answer to increase efficiency?

e When is the answer to choose smaller data?

What’s next?

Object-Oriented
Roadmap Programming

C++ basics

vectors + grids arrays

dynamic memory

stacks + queues
management

sets + maps linked data structures

real-world
algorithms

Life after CS106B/

Diagnostic

agoﬂm

testing analysis

Recursion

RECURSION
RECI R\m\
RECU R\I()N
RE (l R\I()N

RECURSION
RECURSION

RECURSION
RECURSION

Here we go again

RECURSION

Here we go again

