
Big-O Notation and
Algorithmic Analysis

What do you think makes some algorithms "faster"
or "better" than others?

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data structures

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after CS106B!

C++ basics

Midterm

real-world
algorithms

Core
Tools

User/client
Implementation

algorithmic
analysis

Roadmap

Life after CS106B!
Core
Tools

User/client
Implementation

Today’s
question

How can we formalize the
notion of efficiency for
algorithms?

Today’s
topics

1. Review

2. Big-O Notation

3. Algorithmic Analysis

4. Beyond Algorithmic
Analysis

Review

Questions from attendance tickets

● Do structs exist outside of GridLocation?
● Can we use both vectors and stacks at the same time?
● Are grids a thing outside of the Stanford C++ library?
● I don't quite understand why we aren't just learning using regular cpp vectors

Credit: CS106L

http://web.stanford.edu/class/cs106l/lectures/lecture4.pdf

Ordered ADTs

Elements accessible by indices:

● Vectors (1D)
● Grids (2D)

Elements not accessible by indices:

● Queues (FIFO)
● Stacks (LIFO)

Unordered ADTs

● Sets (elements unique)
● Maps (keys unique)

Nested Data Structures

map

"hansa"
"kandula"
"lumpy"
"surus"

{"12:00","3:00","9:00"}

{"8:00","1:00"}

{"11:00"}

{"5:00","3:00","9:00","2:00"}

keys values

Wonderful diagram and animal naming borrowed from Sonja Johnson-Yu

Map< ______, ______ >

Nested Data Structures

Wonderful diagram and animal naming borrowed from Sonja Johnson-Yu

mod
mop
map

lay
may
map

way
may
map

tap
rap
map

rat
rap
map

Queue<__________>

queue

Assignment 2: Fun with Collections

A couple of the ADTs you’ll use:
● Grid<bool>
● Set<GridLocation>
● Stack<GridLocation>

Assignment 2: Fun with Collections

A couple of the ADTs you’ll use:
● Set<string>
● Map<string, Set<string>>

Nested ADTs Summary

● Powerful
○ Can express highly structured and complex data
○ Used in many real-world systems

● Tricky
○ With increased complexity comes increased cognitive load in differentiating between the levels

of information stored at each level of the nesting
○ Specifically in C++, working with nested data structures can be tricky due to the fact that

references and copies show up at different points in time. Follow the correct paradigms
presented earlier to stay on track!

Note on ADTs (and learning overall)

● We covered six different data structures and their applications over the span of
a week, and concluded by implementing BFS using many of these ADTs.

○ This is a lot to take in!

● As Kylie mentioned at the beginning of the quarter, we want to normalize
struggle in this class.

○ We cover content very quickly in this class!
○ If you leave lecture feeling you don't understand the algorithm/concept covered that day, don't

worry.
○ Lecture is always your first exposure to content – very few people can build deep

understanding upon the first exposure
○ The assignments (and section and office hours and LaIR) are your chance to revisit lecture,

practice, and really nail down the concepts!
○ Struggling along the way means that you are really learning.

How can we formalize the
notion of efficiency for

algorithms?

Why do we care about efficiency?

● Implementing inefficient algorithms may make solving certain tasks impossible,
even with unlimited resources

Why do we care about efficiency?

● Implementing inefficient algorithms may make solving certain tasks impossible,
even with unlimited resources

● Implementing efficient algorithms allows us to solve important problems, often
with limited resources available

Source

https://xkcd.com/1445/

Questions computer scientists ask:

1. Does it work?
2. Is it fast?

Credit: CS161

https://web.stanford.edu/class/archive/cs/cs161/cs161.1204/Lectures/Lecture2/Lecture2-compressed.pdf

Assignment 1 At A Glance

● In Assignment 1, you implemented three different algorithms for finding perfect
numbers

Assignment 1 At A Glance

● In Assignment 1, you implemented three different algorithms for finding perfect
numbers

○ Exhaustive Search
■ Runtime predictions to find 5th perfect number: Anywhere from 25-100+ days

Assignment 1 At A Glance

● In Assignment 1, you implemented three different algorithms for finding perfect
numbers

○ Exhaustive Search
■ Runtime predictions to find 5th perfect number: Anywhere from 25-100+ days

○ Smarter Search
■ Runtime predictions to find 5th perfect number: Anywhere from a couple minutes to 1

hour

Assignment 1 At A Glance

● In Assignment 1, you implemented three different algorithms for finding perfect
numbers

○ Exhaustive Search
■ Runtime predictions to find 5th perfect number: Anywhere from 25-100+ days

○ Smarter Search
■ Runtime predictions to find 5th perfect number: Anywhere from a couple minutes to 1

hour
○ Euclid's Algorithm

■ Actual runtime to find 5th perfect number: Less than a second!

Assignment 1 At A Glance

● In Assignment 1, you implemented three different algorithms for finding perfect
numbers

○ Exhaustive Search
■ Runtime predictions to find 5th perfect number: Anywhere from 25-100+ days

○ Smarter Search
■ Runtime predictions to find 5th perfect number: Anywhere from a couple minutes to 1

hour
○ Euclid's Algorithm

■ Actual runtime to find 5th perfect number: Less than a second!

● Core idea: Although each individual experienced dramatically different real
runtimes for these three algorithms, there is a clear distinction here between
"fast"/"efficient" and "slow"/"inefficient" algorithms

Containers

● In lecture on Tuesday, someone asked, why not use a Vector<Vector<string>>
instead of a Grid<string>?

○ Vector of Vectors would be slower to use

● There are "fast"/"efficient" and "slow"/"inefficient" ways to insert, delete, or
manipulate data in containers

Questions computer scientists ask:

1. Does it work?
2. Is it fast?

Credit: CS161

https://web.stanford.edu/class/archive/cs/cs161/cs161.1204/Lectures/Lecture2/Lecture2-compressed.pdf

Why do computer scientists
care about efficiency?

We solve problems at scale.

Google Search
3.8 million searches per minute

Why do we care about efficiency?

● Implementing inefficient algorithms may make solving certain tasks impossible,
even with unlimited resources

● Implementing efficient algorithms allows us to solve important problems, often
with limited resources available

● If we can quantify the efficiency of an algorithm, we can understand and
predict its behavior when we apply it to unseen problems

Estimating Quantities
[polls]

Leveraging Intuition

● Today's activity is going to look a little bit different than usual. There's no code,
no pseudocode, and nothing that resembles C++.

● Instead, you're going to be presented with a set of 4 scenarios, where you
have two similar items of different magnitudes, one small and one larger. You
know the exact magnitude of the smaller item – can you predict what the
magnitude of the larger item will be based on the intuitive visual relationship?

● We'll collect your response to all 4 polls first, and then we'll walk through the
answers to the exercises. Remember that these are guesses based on your
intuition – don't try to do any complex calculations!

What is a rate?

△ y

△ x

Example 1

These two square
plates are made
of the same
material.

They have the
same thickness.

What’s your best
guess for the
mass of the
second square?

Example 2

These two square
plates are made
of the same
material.

They have the
same thickness.

What’s your best
guess for the
mass of the
second square?

Example 3

These two cubes
are made of the
same material.

What’s your best
guess for the
mass of the
second cube?

Example 4

These two statues
are made of the
same material.

What’s your best
guess for the
mass of the
second statue?

Example 5

How much paint is
needed to paint
the surface of the
larger
icosahedron?

Answers

Example 1

These two square
plates are made
of the same
material.

They have the
same thickness.

What’s your best
guess for the
mass of the
second square?

Mass is about 400kg
(4 smaller squares
make up the larger
square)

Example 2

These two square
plates are made
of the same
material.

They have the
same thickness.

What’s your best
guess for the
mass of the
second square?

Mass is about 240kg
(side length is
doubled, overall are
increases by factor
of 4)

Example 3

These two cubes
are made of the
same material.

What’s your best
guess for the
mass of the
second cube?

Mass is about 800kg
(8 smaller cubes
make up the larger
cube)

Example 4

These two statues
are made of the
same material.

What’s your best
guess for the
mass of the
second statue?

Mass is about 27000kg (statue
dimensions increased by factor
of 3, and volume increases by
factor of 27)

Example 5

How much paint is
needed to paint
the surface of the
larger
icosahedron?

Paint Required is
about 1440L (side
length grows by
factor of 4, area
increases by factor
of 4^2 = 16)

Key Takeaway

Knowing the rate at which
some quantity scales allows
you to predict its value in the
future, even if you don’t have
an exact formula.

Big-O Notation
(or, review of rates)

Big-O Notation

● Big-O notation is a way of quantifying the rate at which some quantity grows.

Big-O Notation

● Big-O notation is a way of quantifying the rate at which some quantity grows.
● Example:

○ A square of side length r has area O(r2).

Big-O Notation

● Big-O notation is a way of quantifying the rate at which some quantity grows.
● Example:

○ A square of side length r has area O(r2).

The "O" stands for "on
the order of", which is a
growth prediction, not
an exact formula

Big-O Notation

● Big-O notation is a way of quantifying the rate at which some quantity grows.
● Example:

○ A square of side length r has area O(r2).

Big-O Notation

● Big-O notation is a way of quantifying the rate at which some quantity grows.
● Example:

○ A square of side length r has area O(r2).

Big-O Notation

Doubling r increases area 4x
Tripling r increases area 9x

● Big-O notation is a way of quantifying the rate at which some quantity grows.
● Example:

○ A square of side length r has area O(r2).

Big-O Notation

Doubling r increases area 4x
Tripling r increases area 9x

● Big-O notation is a way of quantifying the rate at which some quantity grows.
● Example:

○ A square of side length r has area O(r2).
○ A circle of radius r has area O(r2).

Big-O Notation

Doubling r increases area 4x
Tripling r increases area 9x

● Big-O notation is a way of quantifying the rate at which some quantity grows.
● Example:

○ A square of side length r has area O(r2).
○ A circle of radius r has area O(r2).

Big-O Notation

Doubling r increases area 4x
Tripling r increases area 9x

● Big-O notation is a way of quantifying the rate at which some quantity grows.
● Example:

○ A square of side length r has area O(r2).
○ A circle of radius r has area O(r2).

Big-O Notation

Doubling r increases area 4x
Tripling r increases area 9x

● Big-O notation is a way of quantifying the rate at which some quantity grows.
● Example:

○ A square of side length r has area O(r2).
○ A circle of radius r has area O(r2).

Big-O Notation

● Big-O notation is a way of quantifying the rate at which some quantity grows.
● Example:

○ A square of side length r has area O(r2).
○ A circle of radius r has area O(r2).

Doubling r increases area 4x
Tripling r increases area 9x

Doubling r increases area 4x
Tripling r increases area 9x

Big-O Notation

● Big-O notation is a way of quantifying the rate at which some quantity grows.
● Example:

○ A square of side length r has area O(r2).
○ A circle of radius r has area O(r2).

Doubling r increases area 4x
Tripling r increases area 9x

Doubling r increases area 4x
Tripling r increases area 9x

This just says that these
quantities grow at the same
relative rates. It does not
say that they’re equal!

Big-O in the Real
World

Big-O Example: Network Value

● Metcalfe’s Law
○ The value of a communications network with n users is O(n2).

Big-O Example: Network Value

● Metcalfe’s Law
○ The value of a communications network with n users is O(n2).

● Imagine a social network has 10,000,000 users and is
worth $10,000,000. Estimate how many users it needs to
have to be worth $1,000,000,000.

● Reasonable guess: The network needs to grow its value
100×. Since value grows quadratically with size, it needs to
grow its user base 10×, requiring 100,000,000 users.

Big-O Example: Cell Size

● Question: Why are cells tiny?

Big-O Example: Cell Size

● Question: Why are cells tiny?
● Assumption: Cells are spheres

Big-O Example: Cell Size

● Question: Why are cells tiny?
● Assumption: Cells are spheres
● A cell absorbs nutrients from its environment through its

surface area.
○ Surface area of the cell: O(r2)

Big-O Example: Cell Size

● Question: Why are cells tiny?
● Assumption: Cells are spheres
● A cell absorbs nutrients from its environment through its

surface area.
○ Surface area of the cell: O(r2)

● A cell needs to provide nutrients all throughout its
volume

○ Volume of the cell: O(r3)

Big-O Example: Cell Size

● Question: Why are cells tiny?
● Assumption: Cells are spheres
● A cell absorbs nutrients from its environment through its

surface area.
○ Surface area of the cell: O(r2)

● A cell needs to provide nutrients all throughout its
volume

○ Volume of the cell: O(r3)

● As a cell gets bigger, its resource intake grows slower
than its resource consumption, so each part of the cell
gets less energy.

r3

r2

Big-O Example: Manufacturing

● You’re working at a company producing cat toys. It costs you some amount of
money to produce a cat toy, and there was some one-time cost to set up the
factory.

● What data would you need to gather to estimate the cost of producing ten
million cat toys?

Big-O Example: Manufacturing

● You’re working at a company producing cat toys. It costs you some amount of
money to produce a cat toy, and there was some one-time cost to set up the
factory.

● What data would you need to gather to estimate the cost of producing ten
million cat toys?

Cost(n) = n × costPerToy + startupCost

Big-O Example: Manufacturing

● You’re working at a company producing cat toys. It costs you some amount of
money to produce a cat toy, and there was some one-time cost to set up the
factory.

● What data would you need to gather to estimate the cost of producing ten
million cat toys?

Cost(n) = n × costPerToy + startupCost

This term grows as a
function of n

Big-O Example: Manufacturing

● You’re working at a company producing cat toys. It costs you some amount of
money to produce a cat toy, and there was some one-time cost to set up the
factory.

● What data would you need to gather to estimate the cost of producing ten
million cat toys?

Cost(n) = n × costPerToy + startupCost

This term grows as a
function of n

This term does not
grow

Big-O Example: Manufacturing

● You’re working at a company producing cat toys. It costs you some amount of
money to produce a cat toy, and there was some one-time cost to set up the
factory.

● What data would you need to gather to estimate the cost of producing ten
million cat toys?

Cost(n) = n × costPerToy + startupCost
 = O(n)

This term grows as a
function of n

This term does not
grow

Trick to calculating Big-O

Throw out all the leading coefficients and lower-order terms (including constants).

Cost(n) = $2 × n + $500

Cost(n) = $2 × n + $500

Cost(n) = O(n)

Nuances of Big-O

● Big-O notation is designed to capture the rate at which a
quantity grows. It does not capture information about
○ leading coefficients: the area of a square and a circle are both O(r2).
○ lower-order terms: there may be other factors contributing to growth that

get glossed over.

● However, it’s still a very powerful tool for predicting behavior.

Attendance ticket:
https://tinyurl.com/30juncs106b

Please don’t send this link to students who are not here. It’s on your honor!

https://tinyurl.com/30juncs106b

Announcements

Announcements

● Assignment 1 due Friday, July 1, at 11:59 pm (grace period Saturday, July 2,
11:59 pm)

● Assignment 2 will be released today. It will be due on Thursday, July 9 at
11:59pm PDT.
○ YEAH hours TBD
○ This assignment is a step-up in complexity compared to A1 – make sure to

get started ASAP.
● If you haven't already, come visit Kylie and me at our office hours! Huang 19.

Big-O Example: Network Value

● Metcalfe’s Law
○ The value of a communications network with n users is O(n2).

● Imagine a social network has 10,000,000 users and is
worth $10,000,000. Estimate how many users it needs to
have to be worth $1,000,000,000.

1. 10,000,000
2. 50,000,000
3. 100,000,000
4. 1,000,000,000

Analyzing Code

Analyzing Code
How can we apply Big-O to
computer science?

Answering “is it fast?”

● We could use runtime
○ Runtime is the amount of time it takes for a program to run

Answering “is it fast?”

● What is runtime?
○ Runtime is the amount of time it takes for a program to run

Old 2012
MacBook

Why runtime isn’t enough

● What is runtime?
○ Runtime is the amount of time it takes for a program to run

Old 2012
MacBook

Ed's powerful
computers

Why runtime isn’t enough

● Measuring wall-clock runtime is less than ideal, since
○ It depends on what computer you’re using,
○ What else is running on that computer,
○ Whether that computer is conserving power,
○ Etc.

It’s very hard to standardize.

Why runtime isn’t enough

● Measuring wall-clock runtime is less than ideal, since
○ It depends on what computer you’re using,
○ What else is running on that computer,
○ Whether that computer is conserving power,
○ Etc.

● Worse, individual runtimes can’t predict future runtimes.

Answering “Is it fast?”

● We need a standardized way to think about rate of algorithms
● That doesn’t make assumptions about our computer, our

circumstances, our inputs, etc.

Answering “Is it fast?”

● We need a standardized way to think about rate of algorithms
● That doesn’t make assumptions about our computer, our

circumstances, our inputs, etc.

Idea: count the number of executions in an algorithm.
● number of times a single operation is done (access an element, compare two items)
● We can analyze this before we even run the program!

Analyzing Code:
vectorMax()

vectorMax()

int vectorMax(Vector<int> &v) {

 int currentMax = v[0];

 int n = v.size();

 for (int i = 1; i < n; i++) {

 if (currentMax < v[i]) {

 currentMax = v[i];

 }

 }

 return currentMax;

}

vectorMax()

int vectorMax(Vector<int> &v) {

 int currentMax = v[0];

 int n = v.size();

 for (int i = 1; i < n; i++) {

 if (currentMax < v[i]) {

 currentMax = v[i];

 }

 }

 return currentMax;

}

Assume any individual
statement takes one unit of time
to execute.

If the input Vector has n
elements, how many
executions (time units) will
this code take to run?

vectorMax()

int vectorMax(Vector<int> &v) {

 int currentMax = v[0];

 int n = v.size();

 for (int i = 1; i < n; i++) {

 if (currentMax < v[i]) {

 currentMax = v[i];

 }

 }

 return currentMax;

}

1 time unit
Total time based on # of repetitions

vectorMax()

int vectorMax(Vector<int> &v) {

 int currentMax = v[0];

 int n = v.size();

 for (int i = 1; i < n; i++) {

 if (currentMax < v[i]) {

 currentMax = v[i];

 }

 }

 return currentMax;

}

1 time unit
1 time unit

Total time based on # of repetitions

vectorMax()

int vectorMax(Vector<int> &v) {

 int currentMax = v[0];

 int n = v.size();

 for (int i = 1; i < n; i++) {

 if (currentMax < v[i]) {

 currentMax = v[i];

 }

 }

 return currentMax;

}

1 time unit
1 time unit
1 time unit

Total time based on # of repetitions

vectorMax()

int vectorMax(Vector<int> &v) {

 int currentMax = v[0];

 int n = v.size();

 for (int i = 1; i < n; i++) {

 if (currentMax < v[i]) {

 currentMax = v[i];

 }

 }

 return currentMax;

}

1 time unit
1 time unit
1 time unit
N time units

Total time based on # of repetitions

vectorMax()

int vectorMax(Vector<int> &v) {

 int currentMax = v[0];

 int n = v.size();

 for (int i = 1; i < n; i++) {

 if (currentMax < v[i]) {

 currentMax = v[i];

 }

 }

 return currentMax;

}

1 time unit
1 time unit
1 time unit
N time units
N-1 time units

Total time based on # of repetitions

vectorMax()

int vectorMax(Vector<int> &v) {

 int currentMax = v[0];

 int n = v.size();

 for (int i = 1; i < n; i++) {

 if (currentMax < v[i]) {

 currentMax = v[i];

 }

 }

 return currentMax;

}

1 time unit
1 time unit
1 time unit
N time units
N-1 time units
N-1 time units

Total time based on # of repetitions

vectorMax()

int vectorMax(Vector<int> &v) {

 int currentMax = v[0];

 int n = v.size();

 for (int i = 1; i < n; i++) {

 if (currentMax < v[i]) {

 currentMax = v[i];

 }

 }

 return currentMax;

}

1 time unit
1 time unit
1 time unit
N time units
N-1 time units
N-1 time units
(up to) N-1 time units

Total time based on # of repetitions

vectorMax()

int vectorMax(Vector<int> &v) {

 int currentMax = v[0];

 int n = v.size();

 for (int i = 1; i < n; i++) {

 if (currentMax < v[i]) {

 currentMax = v[i];

 }

 }

 return currentMax;

}

1 time unit
1 time unit
1 time unit
N time units
N-1 time units
N-1 time units
(up to) N-1 time units
1 time unit

Total time based on # of repetitions

vectorMax()

int vectorMax(Vector<int> &v) {

 int currentMax = v[0];

 int n = v.size();

 for (int i = 1; i < n; i++) {

 if (currentMax < v[i]) {

 currentMax = v[i];

 }

 }

 return currentMax;

}

4N + 1
Total amount of time

vectorMax()

int vectorMax(Vector<int> &v) {

 int currentMax = v[0];

 int n = v.size();

 for (int i = 1; i < n; i++) {

 if (currentMax < v[i]) {

 currentMax = v[i];

 }

 }

 return currentMax;

}

4N + 1

Is this useful?
What does this tell us?

Total amount of time

Answering “Is it fast?”

● We need a standardized way to think about rate of algorithms
● That doesn’t make assumptions about our computer, our

circumstances, our inputs, etc.

Idea: count the number of executions in an algorithm.
● Maybe this is still too much detail
● Constant factors might still depend on the system

Answering “Is it fast?”

● We need a standardized way to think about rate of algorithms
● That doesn’t make assumptions about our computer, our

circumstances, our inputs, etc.

Better idea: find the Big-O of this algorithm.
● General enough to help us compare across computers
● It’s a rate that represents: As the input size grows, how does the runtime grow?
● A computer-independent metric for efficiency!

vectorMax()

int vectorMax(Vector<int> &v) {

 int currentMax = v[0];

 int n = v.size();

 for (int i = 1; i < n; i++) {

 if (currentMax < v[i]) {

 currentMax = v[i];

 }

 }

 return currentMax;

}

4N + 1

Is this useful?
What does this tell us?

Total amount of time

vectorMax()

int vectorMax(Vector<int> &v) {

 int currentMax = v[0];

 int n = v.size();

 for (int i = 1; i < n; i++) {

 if (currentMax < v[i]) {

 currentMax = v[i];

 }

 }

 return currentMax;

}

O(n)

More practical: Doubling the size of the
input roughly doubles the runtime.
Therefore, the input and runtime have a
linear (O(n)) relationship.

Total amount of time

Analyzing Code:
printStars()

printStars()

void printStars(int n) {

 for (int i = 0; i < n; i++) {

 for (int j = 0; j < n; j++) {

 cout << '*' << endl;

 }

 }

}

How much time will it take for this code to run, as a function of n?
Answer using big-O notation.

printStars()

void printStars(int n) {

 for (int i = 0; i < n; i++) {

 for (int j = 0; j < n; j++) {

 cout << '*' << endl;

 }

 }

}

How much time will it take for this code to run, as a function of n?
Answer using big-O notation.

printStars()

void printStars(int n) {

 for (int i = 0; i < n; i++) {

 for (int j = 0; j < n; j++) {

 // do a fixed amount of work

 }

 }

}

How much time will it take for this code to run, as a function of n?
Answer using big-O notation.

printStars()

void printStars(int n) {

 for (int i = 0; i < n; i++) {

 for (int j = 0; j < n; j++) {

 // do a fixed amount of work

 }

 }

}

How much time will it take for this code to run, as a function of n?
Answer using big-O notation.

printStars()

void printStars(int n) {

 for (int i = 0; i < n; i++) {

 // do O(n) time units of work

 }

}

How much time will it take for this code to run, as a function of n?
Answer using big-O notation.

printStars()

void printStars(int n) {

 for (int i = 0; i < n; i++) {

 // do O(n) time units of work

 }

}

How much time will it take for this code to run, as a function of n?
Answer using big-O notation.

printStars()

void printStars(int n) {

 // do O(n2) time units of work

}

How much time will it take for this code to run, as a function of n?
Answer using big-O notation.

printStars()

void printStars(int n) {

 for (int i = 0; i < n; i++) {

 for (int j = 0; j < n; j++) {

 cout << '*' << endl;

 }

 }

}

O(n2)

A final analyzing code
example

hmmThatsStrange()

void hmmThatsStrange(int n) {

cout << "Mirth and Whimsy" << n << endl;

}

The runtime is completely independent of the value n.

hmmThatsStrange()

void hmmThatsStrange(int n) {

cout << "Mirth and Whimsy" << n << endl;

}

 How much time will it take for this code to run, as a function of n?
Answer using big-O notation.

hmmThatsStrange()

void hmmThatsStrange(int n) {

cout << "Mirth and Whimsy" << n << endl;

}

O(1)

Applying Big-O to
ADTs

Efficiency Categorizations So Far

● Constant Time – O(1)
○ Super fast, this is the best we can hope for!
○ Euclid's Algorithm for Perfect Numbers

● Linear Time – O(n)
○ This is okay, we can live with this

● Quadratic Time – O(n2)
○ This can start to slow down really quickly
○ Exhaustive Search for Perfect Numbers

● How do all the ADT operations we've seen so far fall into these categories?
Input size

ru
nt

im
e

Big-O Terminology

A fast algorithm is when the worst-case run-time grows SLOWLY
with the input size.

ADT Big-O Matrix

ADT Big-O Matrix

● Vectors
○ .size() – O(1)
○ .add() – O(1)
○ v[i] – O(1)
○ .insert() – O(n)
○ .remove() – O(n)
○ .sublist() - O(n)
○ traversal – O(n)

● Grids
○ .numRows()/.numCols() – O(1)
○ g[i][j] – O(1)
○ .inBounds() – O(1)
○ traversal – O(n2)

ADT Big-O Matrix

● Vectors
○ .size() – O(1)
○ .add() – O(1)
○ v[i] – O(1)
○ .insert() – O(n)
○ .remove() – O(n)
○ .sublist() - O(n)
○ traversal – O(n)

● Grids
○ .numRows()/.numCols() – O(1)
○ g[i][j] – O(1)
○ .inBounds() – O(1)
○ traversal – O(n2)

● Queues
○ .size() – O(1)
○ .peek() – O(1)
○ .enqueue() – O(1)
○ .dequeue() – O(1)
○ .isEmpty() – O(1)
○ traversal – O(n)

● Stacks
○ .size() – O(1)
○ .peek() – O(1)
○ .push() – O(1)
○ .pop() – O(1)
○ .isEmpty() – O(1)
○ traversal – O(n)

ADT Big-O Matrix

● Vectors
○ .size() – O(1)
○ .add() – O(1)
○ v[i] – O(1)
○ .insert() – O(n)
○ .remove() – O(n)
○ .sublist() - O(n)
○ traversal – O(n)

● Grids
○ .numRows()/.numCols() – O(1)
○ g[i][j] – O(1)
○ .inBounds() – O(1)
○ traversal – O(n2)

● Sets
○ .size() – O(1)
○ .isEmpty() – O(1)
○ .add() – ???
○ .remove() – ???
○ .contains() – ???
○ traversal – O(n)

● Maps
○ .size() – O(1)
○ .isEmpty() – O(1)
○ m[key] – ???
○ .contains() – ???
○ traversal – O(n)

● Queues
○ .size() – O(1)
○ .peek() – O(1)
○ .enqueue() – O(1)
○ .dequeue() – O(1)
○ .isEmpty() – O(1)
○ traversal – O(n)

● Stacks
○ .size() – O(1)
○ .peek() – O(1)
○ .push() – O(1)
○ .pop() – O(1)
○ .isEmpty() – O(1)
○ traversal – O(n)

ADT Big-O Matrix

● Vectors
○ .size() – O(1)
○ .add() – O(1)
○ v[i] – O(1)
○ .insert() – O(n)
○ .remove() – O(n)
○ .sublist() - O(n)
○ traversal – O(n)

● Grids
○ .numRows()/.numCols() – O(1)
○ g[i][j] – O(1)
○ .inBounds() – O(1)
○ traversal – O(n2)

● Sets
○ .size() – O(1)
○ .isEmpty() – O(1)
○ .add() – ???
○ .remove() – ???
○ .contains() – ???
○ traversal – O(n)

● Maps
○ .size() – O(1)
○ .isEmpty() – O(1)
○ m[key] – ???
○ .contains() – ???
○ traversal – O(n)

● Queues
○ .size() – O(1)
○ .peek() – O(1)
○ .enqueue() – O(1)
○ .dequeue() – O(1)
○ .isEmpty() – O(1)
○ traversal – O(n)

● Stacks
○ .size() – O(1)
○ .peek() – O(1)
○ .push() – O(1)
○ .pop() – O(1)
○ .isEmpty() – O(1)
○ traversal – O(n)

How can we achieve faster
than O(n) runtime when
searching/storing n
elements?

Beyond Algorithmic Analysis
(credit: Katie Creel)

Algorithmic complexity analysis can be the difference between a
program that runs in a few seconds and one that won’t finish before
the heat death of the universe. It is often necessary.

Questions computer scientists ask:

1. Does it work?
2. Is it fast?

Is that all we care about?

Credit: CS161

https://web.stanford.edu/class/archive/cs/cs161/cs161.1204/Lectures/Lecture2/Lecture2-compressed.pdf

WHAT ELSE IS
IN THE BIG
PICTURE VIEW
OF AN
ALGORITHM?

Case Study:
In 2006, the State of Indiana
awarded IBM/ACS a contract for
>$1 billion to “modernize”
Indiana’s welfare case
management system, including
applications for food stamps and
Medicaid.

After only 19 months, it was
clearly not going as planned.

Case Study

Some "lowlights" of the system's failures:

● "Applicants waited 20 or 30 minutes on hold, only to be denied benefits for

“failure to cooperate in establishing eligibility” if they were unable to receive
a callback after having burned through their limited cellphone minutes.”

● "By February 2008, the number of households receiving food stamps in

Delaware County, which includes Muncie, Indiana, dropped more than 7
percent, though requests for food assistance had climbed 4 percent in
Indiana overall.”

C
as

e
St

ud
y In light of these failures, the State of Indiana

cancelled its contract with IBM and sued the
company for breach of contract.

In court, IBM argued that they were not responsible
for issues related to wait times, appeals, wrongful
denials, lost documents, etc. as the contract only
stated that a successful system would succeed by
increasing efficiency and reducing costs and fraud.
IBM’s system did reduce costs, but did so by
denying people the benefits they needed.

EFFICIENCY & OPTIMIZATION CAN ONLY BE
AS GOOD AS GOOD AS WHAT IS OPTIMIZED...

Questions computer scientists ask:

1. Does it work?
2. Is it fast?

Is that all we care about?

Credit: CS161

https://web.stanford.edu/class/archive/cs/cs161/cs161.1204/Lectures/Lecture2/Lecture2-compressed.pdf

When Less
Efficient
Algorithms
Rule

Passwords are often encrypted with a hash.

What prevents a hacker from guessing
randomly, perhaps millions of times per
minute, until the password is discovered?

~ Algorithmic Inefficiency ~

bcrypt and other popular encryption functions
are intentionally designed to be slow, memory
intensive, or both, making guessing more
costly.

Computation
requires
energy.

Green
Computing

Big-O analysis can also
be part of a “green
computing”: a
commitment to
decreasing the
environmental impact of
computing.

Green Computing Includes ...

Selecting sources of electricity with
lower greenhouse gas emissions,
including by moving computing to
the cloud when necessary

Decreasing carbon
footprint of datacenters

Recycling and reducing use of raw
materials during manufacturing,
especially metals that are socially and
environmentally damaging to mine

Reducing energy consumption
of computation itself, including
by increasing algorithmic
efficiency!

Improving
efficiency can
reduce energy

Big data needs Big O
and efficient
algorithms

But storing big
data has a big
carbon cost

Green Computing’s
Efficiency Tradeoffs

● When is the answer to increase efficiency?

● When is the answer to choose smaller data?

What’s next?

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data structures

algorithmic
analysistesting

Roadmap

Life after CS106B!

C++ basics

Diagnostic

real-world
algorithms

User/client
Implementation

recursive
problem-solving

Core
Tools

Recursion

